A variância tem o objetivo de analisar o grau de variabilidade de determinadas situações, através dela podemos perceber desempenhos iguais, muito próximos ou muito distantes. A média aritmética pode ser usada para avaliar situações de forma geral, já a variância determina de forma mais específica as possíveis variações, no intuito de não comprometer os resultados da análise. Vamos, através de um exemplo, determinar a eficiência da variância.
Observe as notas de três competidores em uma prova de manobras radicais com skates.
Competidor A: 7,0 – 5,0 – 3,0
Competidor B: 5,0 – 4,0 – 6,0
Competidor C: 4,0 – 4,0 – 7,0
Ao calcular a média das notas dos três competidores iremos obter média cinco para todos, impossibilitando a nossa análise sobre a regularidade dos competidores.
Partindo dessa ideia, precisamos adotar uma medida que apresente a variação dessas notas no intuito de não comprometer a análise.
Observe os cálculos:
Competidor A
VA = (7-5)² + (5-5)² + (3-5)² = 4+0+4 = 2,667
3 3
Competidor B
VB = (5-5)² + (4-5)² + (6-5)² = 0+1+1 = 0,667
3 3
Competidor C
VC = (4-5)² + (4-5)² + (7-5)² = 1+1+4 = 2
3 3
Desvio Padrão
É calculado extraindo a raiz quadrada da variância.
Competidor A
√2,667 = 1,633
Competidor B
√ 0,667 = 0,817
Competidor C
√2 = 1,414
Competidor A
√2,667 = 1,633
Competidor B
√ 0,667 = 0,817
Competidor C
√2 = 1,414
Nenhum comentário:
Postar um comentário